337. 打家劫舍 III
在上次打劫完一条街道之后和一圈房屋后,小偷又发现了一个新的可行窃的地区。这个地区只有一个入口,我们称之为“根”。 除了“根”之外,每栋房子有且只有一个“父“房子与之相连。一番侦察之后,聪明的小偷意识到“这个地方的所有房屋的排列类似于一棵二叉树”。 如果两个直接相连的房子在同一天晚上被打劫,房屋将自动报警。
计算在不触动警报的情况下,小偷一晚能够盗取的最高金额。
示例 1:
输入: [3,2,3,null,3,null,1]
3
/ \
2 3
\ \
3 1
输出: 7
解释: 小偷一晚能够盗取的最高金额 = 3 + 3 + 1 = 7.
解析
我们一步步递进,首先我们能盗取的就是max(爷爷节点+4个孙子节点,2个父亲节点),这里我们可以写代码
class Solution {
public int rob(TreeNode root) {
if (root == null) return 0;
int money = root.val;
if (root.left != null) {
money += (rob(root.left.left) + rob(root.left.right));
}
if (root.right != null) {
money += (rob(root.right.left) + rob(root.right.right));
}
return Math.max(money, rob(root.left) + rob(root.right));
}
}
在这里存在一个问题就是我们对于子问题重复算了好几次,所以我们用一个map来做缓存
public int rob(TreeNode root) {
HashMap<TreeNode, Integer> memo = new HashMap<>();
return robInternal(root, memo);
}
public int robInternal(TreeNode root, HashMap<TreeNode, Integer> memo) {
if (root == null) return 0;
if (memo.containsKey(root)) return memo.get(root);
int money = root.val;
if (root.left != null) {
money += (robInternal(root.left.left, memo) + robInternal(root.left.right, memo));
}
if (root.right != null) {
money += (robInternal(root.right.left, memo) + robInternal(root.right.right, memo));
}
int result = Math.max(money, robInternal(root.left, memo) + robInternal(root.right, memo));
memo.put(root, result);
return result;
}
在这里思路一就结束了,我们看思路二,使用一个大小为 2 的数组来表示 int[] res = new int[2] 0 代表不偷,1 代表偷
任何一个节点能偷到的最大钱的状态可以定义为
当前节点选择不偷:当前节点能偷到的最大钱数 = 左孩子能偷到的钱 + 右孩子能偷到的钱
当前节点选择偷:当前节点能偷到的最大钱数 = 左孩子选择自己不偷时能得到的钱 + 右孩子选择不偷时能得到的钱 + 当前节点的钱数
public int rob(TreeNode root) {
int[] result = robInternal(root);
return Math.max(result[0], result[1]);
}
public int[] robInternal(TreeNode root) {
if (root == null) return new int[2];
int[] result = new int[2];
int[] left = robInternal(root.left);
int[] right = robInternal(root.right);
result[0] = Math.max(left[0], left[1]) + Math.max(right[0], right[1]);
result[1] = left[0] + right[0] + root.val;
return result;
}
注意:本文归作者所有,未经作者允许,不得转载